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Abstract The advantages of non-uniform sampling

(NUS) in offering time savings and resolution enhancement

in NMR experiments have been increasingly recognized.

The possibility of sensitivity gain by NUS has also been

demonstrated. Application of NUS to multidimensional

NMR experiments requires the selection of a sampling

scheme and a reconstruction scheme to generate uniformly

sampled time domain data. In this report, an efficient re-

construction scheme is presented and used to evaluate a

range of regularization algorithms that collectively yield a

generalized solution to processing NUS data in multidi-

mensional NMR experiments. We compare l1-norm (L1),

iterative re-weighted l1-norm (IRL1), and Gaussian

smoothed l0-norm (Gaussian-SL0) regularization for pro-

cessing multidimensional NUS NMR data. Based on the

reconstruction of different multidimensional NUS NMR

data sets, L1 is demonstrated to be a fast and accurate

reconstruction method for both quantitative, high dynamic

range applications (e.g. NOESY) and for all J-coupled

correlation experiments. Compared to L1, both IRL1 and

Gaussian-SL0 are shown to produce slightly higher quality

reconstructions with improved linearity in peak intensities,

albeit with a computational cost. Finally, a generalized

processing system, NESTA-NMR, is described that utilizes

a fast and accurate first-order gradient descent algorithm

(NESTA) recently developed in the compressed sensing

field. NESTA-NMR incorporates L1, IRL1, and Gaussian-

SL0 regularization. NESTA-NMR is demonstrated to pro-

vide an efficient, streamlined approach to handling all

types of multidimensional NMR data using proteins rang-

ing in size from 8 to 32 kDa.

Keywords Non-uniform sampling � Multidimensional

NMR data processing � Compressed sensing � NESTA �
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Introduction

Multidimensional NMR experiments are powerful tech-

niques for extracting structural and dynamic information

about proteins and other macromolecules. However, these

experiments can be very time consuming on high field

NMR spectrometers, where the necessity of covering larger

spectral widths leads to shorter dwell times, which in turn

make it difficult to achieve acquisition times sufficient to

afford the necessary resolution. Furthermore, conventional

(uniform) sampling schemes require the acquisition of data

at equally spaced time points in all indirect dimensions to

enable discrete Fourier transform (DFT) for data process-

ing and analysis. For these reasons, uniform sampling is

limiting in three-dimensional (3D) experiments, and the

impact is exacerbated in four-dimensional (4D) ex-

periments. In contrast, non-uniform sampling (NUS) al-

lows a significant portion of the data points on the sampling

grid to be omitted, thus enabling acquisition at long evo-

lution times, where closely spaced signals can be resolved,

without increasing the experimental acquisition time (Hoch
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et al. 2014; Szantay 2008). Recently, several studies

demonstrated that sensitivity gains can also be achieved

with NUS methods (Hyberts et al. 2012c; Paramasivam

et al. 2012; Rovnyak et al. 2011). These advantages make

NUS an attractive method for a broad range of NMR ex-

periments. Additionally, recent updates to spectrometer

software make NUS acquisition a simple runtime option.

The wide range of NMR experiments of differing dynamic

range necessitates an efficient, general processing scheme,

which seamlessly functions on a variety of computational

platforms, ranging from laptops to computational clusters,

and accommodates all experiment types in order to fa-

cilitate common adaptation of NUS methods.

The application of NUS for NMR experiments requires

two additional steps compared to conventional data ac-

quisition and processing: (1) design of a NUS schedule (for

the purposes of this report, only ‘‘on-grid’’ sampling will be

considered); and (2) reconstruction of the unsampled data

points with a suitable algorithm to create a uniformly

sampled grid. Ideally, such an algorithm would utilize both

information available from sampled data points and as-

sumptions about the properties of the NMR signals.

For the first step, it is desirable to use sampling sched-

ules that produce spectra with high fidelity (resonance

frequencies and intensity) relative to a uniformly sampled

counterpart while using the minimal acquisition time pos-

sible. The complex relationship of these requirements is an

ongoing area of research (Hyberts et al. 2012a; Ma-

ciejewski et al. 2012). Nevertheless, it has been demon-

strated recently that one can obtain high quality

multidimensional spectra even if an ‘‘aggressive’’ under-

sampling NUS schedule (e.g.\1 % of sampled points) has

been used (Hyberts et al. 2012b), though we do not

specifically advocate such a degree of undersampling. This

phenomenon can be explained by the theory of compressed

sensing (CS) (Candès et al. 2006a, b; Candès and Tao

2005, 2006; Donoho 2006) that proves for a suitably sparse

sample, a high quality reconstruction of the original signal

is guaranteed when the following condition has been met:

n[ cK log N=Kð Þ ð1Þ

where N is the full length of the vector, K is the number of

non-zero values (peaks) in the vector, c is a small constant

whose value is often empirically determined, and n is the

number of points sampled. However, as noted previously

(Hoch and Stern 1996; Kazimierczuk and Orekhov 2011;

Mayzel et al. 2014), NMR data are not strictly sparse, as

the term is defined by the CS equation. Nevertheless, as is

implied by the equation, the principle driver of the required

number of points (n) is the number of anticipated peaks

(K), which we use as a guideline (with some additional

percentage to account for error) for determining how many

experimental points to collect.

The sampled points are dispersed over a grid of larger

size, causing the sparsity of the data acquisition and the

resolution of the final spectrum to increase without de-

grading quality. Since the number of NMR signals is

generally independent of spectrum dimensionality, the

number of sampled points required by NUS will not in-

crease—at least not in a geometric fashion—when higher

dimensional experiments are employed. Rather, the num-

ber of sampling points required is related to the number of

spectral components and, hence, is correlated with the

experiment type and size of the molecule under study.

Therefore, dramatic under-sampling can be applied in high-

dimensional NMR experiments, especially in 4D ex-

periments. The design of sampling schemes remains an

intense area of research (Aoto et al. 2014; Hyberts et al.

2012a; Maciejewski et al. 2012) and will not be discussed

further in this report.

In the second step, reconstruction of the uniformly

sampled data begins with creation of a grid where the

sampled data points occupy their expected position in the

final, reconstructed matrix and unsampled points are set to

zero. Each vector of the matrix is then processed with an

algorithm that minimizes a target function, as has been

elegantly described for the maximum entropy (Hoch and

Stern 1996) and multidimensional decomposition (MDD)

(Orekhov et al. 2003; Orekhov and Jaravine 2011) meth-

ods. There are two important considerations in this pro-

cess. First, the reconstructed data needs to be consistent

with the experimental data at the sampled points. Con-

sistency can be achieved by including a ‘‘data consistency

term’’ (e.g. the sum of the square of the deviations) in the

target function to penalize deviations of reconstructed data

points from originally sampled ones or by keeping the

experimentally sampled points unchanged during the

procedure. Second, the reconstructed data can be modeled

mathematically to include a property (or term in the target

function) that, when minimized, represents the best re-

construction of the missing points onto the full data grid.

This term is typically referred to as a ‘‘regularization

term’’. Approaches such as these have been shown to en-

able a convergent path to the optimal reconstruction (Hoch

and Stern 1996). This modeling procedure can utilize

different properties of the signals, thus yielding different

regularization terms and associated target functions. The

choice of a specific regularization term leads to different

NMR data processing methods, such as maximum entropy

reconstruction (Hoch et al. 2014; Hoch and Stern 1996),

MDD (Orekhov et al. 2003; Orekhov and Jaravine 2011),

l1-norm minimization (Bostock et al. 2012; Hyberts et al.

2007, 2009; Stern et al. 2007) and iterative re-weighted

least squares (IRLSs) (Kazimierczuk and Orekhov 2011).

For a given model, various numerical optimization or

minimization techniques are utilized to minimize the
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target function and reconstruct the unsampled data points.

The choice of a particular regularization term and the

numerical algorithm used to minimize the target function

constitute the core of a NUS NMR data processing

method.

In this report, we consider several models of signal

properties and regularization terms that can be used for

processing NUS NMR data. Generally, NMR signals are

sparse in the frequency domain of multidimensional ex-

periments, which results in the majority of the data points

being close to zero—i.e. they fall within the Gaussian

distributed noise which is characterized by a standard de-

viation r. This is especially true for the indirect dimen-

sions of multidimensional NMR experiments, where the

data corresponding to a single frequency along the directly

detected dimension contains relatively few signals com-

pared to a large number of data points. Within the con-

straint of data-consistency (vide supra), one needs to

minimize the total number of non-zero points, hereafter

referred to as the l0-norm, in the frequency domain. Ex-

tensive research in the CS-field has demonstrated that l0-

norm minimization by an exhaustive combinatorial search

is generally impractical for large scale problems, such as

multidimensional NMR spectra. For example, a 3D NMR

experiment with two NUS dimensions typically requires

reconstruction of *6000 (e.g. 64 9 96) hypercomplex

points for every discrete frequency along the direct di-

mension (*512–1024 points). For such a task, a combi-

natorial search is impractical with current computational

power. Instead, many regularization terms that exploit the

‘‘sparse’’ property of signals have been proposed. We

consider the application of three of these terms to NUS

NMR data and present a highly efficient optimization

procedure (NESTA), which yields a general and complete

processing package (NESTA-NMR) capable of handling

both low-to-medium dynamic range experiments (such as

triple-resonance assignment experiments) and high-dy-

namic range, quantitative experiments (such as NOESY,

J-modulated dipolar coupling measurements, or relaxation

spectra).

Regularization terms and reconstruction
algorithms

In the context of NMR data processing, the l1-norm (L1,

the sum of absolute values) regularization has been

demonstrated to be suitable for high dynamic range

(NOESY-type) NUS NMR data (Bostock et al. 2012; Hy-

berts et al. 2007, 2009; Kazimierczuk and Orekhov 2011).

For complex data, L1 has been defined previously (Hyberts

et al. 2007, 2009; Kim et al. 2007; Wright et al. 2009) as

fk kl1¼
X

fkj j ð2Þ

where

fkj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2k;rr þ f 2k;ri þ f 2k;ir þ f 2k;ii

q
ð3Þ

and

fkj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2k;rrr þ f 2k;rri þ f 2k;rir þ f 2k;rii þ f 2k;irr þ f 2k;iri þ f 2k;iir þ f 2k;iii

q

ð4Þ

for frequency domain data that contain two and three NUS

dimensions, respectively. Hence, processing NUS data can

be reduced to a numerical minimization of L1 as defined

above. In addition to L1, we consider several regularization

terms based on the sparse assumption that has been used in

the CS field. Candès et al. have demonstrated that using an

iteratively re-weighted l1-norm (IRL1) as the regulariza-

tion term can further improve data reconstruction from

incomplete measurements (Candès et al. 2008). IRL1 is

defined as

firk kl1¼
X

xk fkj j ð5Þ

where

xiþ1
k ¼ 1= fkj jiþe

� �
ð6Þ

except for the first iteration, where xk = 1.0.

The point-wise weight xk
i?1 at the i ? 1th iteration is

calculated from |fk|
i, which has the same definition as de-

scribed above for the ith iteration. The parameter e is set to
a small positive value (e.g. 0.1) to avoid division by zero.

This approach bears some conceptual similarity to the

IRLS regularization method (Kazimierczuk and Orekhov

2011). Another derived regularization term that meets the

sparse assumption is the Gaussian smoothed l0-norm

(Gaussian-SL0) (Mohimani et al. 2009; Trzasko et al.

2007), defined as

fk ksl0¼
X

ð1� e�0:5 fkj j2=r2Þ ð7Þ

when r is very small relative to the signal amplitude |fk|

(vide supra), Gaussian-SL0 is a good approximation of the

l0-norm as the term 1� e�0:5 fkj j2=r2 rapidly approaches ei-

ther 1 or 0.

Minimization of target functions that include the

regularization terms described above (L1, IRL1, Gaussian-

SL0, and many others) is an active research topic in the CS

field. CS techniques have also been widely applied in

signal and image processing, for instance in MRI (Lustig

et al. 2007). The development of such algorithms provides

opportunities to leverage these accomplishments for the

purpose of processing NUS NMR data. Recently, the

NESTA algorithm was introduced by Becker et al. as a first
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order method for fast and accurate signal recovery or image

reconstruction (Becker et al. 2011). It was demonstrated

that NESTA, which implements Nestrov’s ideas (2005),

can rapidly and accurately recover noisy compressed sig-

nals with very large dynamic range (*60 dB power). The

method incorporates: (1) the coupling of smoothing tech-

niques with gradient methods for optimizing non-smooth

functions; and (2) first-order methods with very rapid

convergence rates. The complete mathematical description

and rigorous analysis of the NESTA algorithm, as well as a

comparison between NESTA and several state-of-the-art

L1 minimization algorithms, can be found elsewhere

(Becker et al. 2011). The salient features of NESTA and

our adaptation of the algorithm for processing hypercom-

plex NMR data are briefly described here. First, the NMR

data is processed in the direct dimension, and a region of

interest (e.g. the left half of an HN detected spectra) is

extracted. This data is then divided along each frequency

domain point in the direct dimension. For each of these

slices, the corresponding data is shuffled according to the

sampling schedule and the remaining (unsampled) points

are zero-filled. This slice is two- and three-dimensional for

3D and 4D NMR experiments, respectively. Second, based

on the definition of L1 for hypercomplex NMR data (vide

supra), the point-wise gradient is computed. Sampled

points are retained while unsampled points are updated

according to the gradient and its previous value. The pro-

cess of computing the gradient and updating the unsampled

data points is repeated until convergence is reached. The

NMR data can then be processed using standard methods

as if it were uniformly sampled. For ILR1, an additional

outer loop is introduced for weighting of the l1-norm. In-

side this additional loop, the re-weighted l1-norm is

minimized using slightly different gradient calculations,

and then point-wise weights are updated. Gaussian-SL0 is a

smooth, non-convex function, and, in our experience, such

functions gain little acceleration from the NESTA algo-

rithm. Furthermore, the minimization procedure for Gaus-

sian-SL0 has a tendency to become trapped in local

minima; hence, a procedure described by Mohimani et al.

was adopted to improve the performance of Gaussian-SL0

(Mohimani et al. 2009). More detailed description and a

flow chart for the data processing procedure are provided in

the Supplementary Information.

Materials and methods

Experimental data were collected on three different pro-

teins: (1) a 1 mM sample of the 8 kDa CUE domain con-

taining residues 453–504 from human gp78 (Liu et al.

2012); (2) a 330 lM sample of the 15 kDa PH domain of

ASAP1, which contains residues 339–451 (Luo et al.

2008); and (3) a 400 lM sample of the 32 kDa two domain

construct (ZA) of ASAP1 containing residues 441–724

(Luo et al. 2008). Isotope labeling was performed by ex-

pressing and purifying the proteins from E. coli using

standard techniques to produce either uniform 13C, 15N-

labeled protein, uniform 2H, 13C, 15N-labeled protein

(DCN), or uniform 2H, 13C, 15N, 13C1H3-methyl (Iled1,
Leu, Val) labeled protein (DCN-ILV) or 2H, 15N, 13C1H3-

methyl (Iled1, Leu, Val) labeled protein (DCmethylN-ILV).

NESTA-NMR has been used to process a wide range of

3D and 4D NMR experiments that were collected on these

three samples, and the salient information of all of these

experiments is listed in Supplemental Table 1. Data dis-

cussed explicitly in the manuscript consist of the following

four data sets:

1. A 4D methyl–methyl HMQC-NOESY-HMQC ex-

periment (4D CC-NOESY) utilizing mixed con-

stant-time evolution (Ying et al. 2007) was

recorded on 1 mM DCN-ILV gp78 CUE using a

Bruker Avance 900 MHz instrument running

TopSpin 2 with cryoprobe at 298 K. The standard

pulse sequence was modified to store all of the

hypercomplex pairs adjacent to each other with

quadrature modulations preceding time modulation

and the delays in the indirect dimensions calculated

according to a NUS sampling schedule. In order to

compare reconstructions with those of different

programs, the sampling schedule was produced by

an in-house Python script according to the algo-

rithm described by Mobli et al. (2010) which was

additionally modified to ensure every index for a

given dimension contained at least one sampling

point. Sampling consisted of 7200 NUS points

taken on a 48 13C 9 32 1H 9 48 13C grid with a

sampling density of 9.8 %. In this report, the

number of points of an indirect dimension is

described in complex points—i.e. real and imagin-

ary data are counted as one point. The maximum

evolution times in the indirect dimensions were

11.5 ms for both 13C dimensions and 34.1 ms for

the indirect 1H dimension. Spectral widths were

4098 Hz for both 13C dimensions and 909 Hz for

the indirect 1H dimension. Each FID was recorded

with 4 scans, and the NOE mixing period was

150 ms.

2. A variable (non-constant) time 4D methyl–methyl

HMQC-NOESY-HMQC (Diercks et al. 1999) ex-

periment was acquired on a 400 lM sample of

DCmethylN-ILV ZA on a Bruker Avance III

600 MHz instrument with cryoprobe at 298 K

using TopSpin 3.2. The sampling schedule was

designed with ScheduleTool, which is distributed
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with RNMRTK (Hoch and Stern 1996), and

consisted of 12,000 NUS points taken on a 48
13C 9 64 1H 9 48 13C grid with a sampling

density of 8.1 %. The maximum evolution times

in the indirect dimensions were 12.2 ms for both
13C dimensions and 19.0 ms for the indirect 1H

dimension. Spectral widths were 3922 Hz for both
13C dimensions and 3360 Hz for the indirect 1H

dimension. Each FID was recorded with 4 scans

and the NOE mixing period was 200 ms.

3&4. Two 3D 15N-edited NOESY-HSQC experiments

were acquired on a 330 lM 15N-labeled PH

domain on a Bruker Avance III 600 MHz instru-

ment with cryoprobe at 298 K using the Topspin

3.2 library pulse sequence nosesyhsqcf3gp193d

(Sklenar et al. 1993). One data set was collected

with uniform sampling (36 13C 9 180 1H) and

serves as the reference. The other was collected

with 1620 NUS points (25 % sampling density) on

a 36 9 180 grid. The sampling schedule was

designed with ScheduleTool. For both experiments,

the maximum evolution times in the indirect

dimensions were 18.5 ms for 15N and 25 ms for
1H. Spectral widths were 1945 Hz for 15N and

7194 Hz for 1H. The NOE mixing period was

60 ms. Each FID contained 8 and 32 scans for the

uniformly sampled and non-uniformly sampled

data, respectively.

Data reconstruction was performed using in-house C

programs for both the NESTA algorithm and alternative

algorithms used for comparison. This was done to enable

direct comparison of convergence rates since package-

specific implementations may affect computing efficiency.

Thus, all the algorithms utilized the same libraries and

were compiled on the same computer. Mixed-radix FFT

and IFFT routines from the GNU Scientific Library (GSL)

(Galassi et al. 2009) capable of processing complex vectors

of any length (not restricted to powers of 2) were used to

construct multidimensional subroutines to transform hy-

percomplex data. Direct comparison of algorithms rather

than a specific software package is enabled because the

algorithms utilize the same libraries and the analysis of

computational efficiency is measured by the number of

iterations required to reach convergence.

The processing package NESTA-NMR was developed

to apply NESTA minimization to 2D, 3D, and 4D NMR

data. Data described in this manuscript were processed on a

desktop computer running Centos 6 with a 2.13 GHz Intel

Xeon processor containing 4 hyperthreaded cores (8

threads) or a Mac Pro with a 3.5 GHz Intel Xeon processor

containing 6 hyperthreaded cores (12 threads). The soft-

ware can also be run on a cluster to access even more

threads; however, this is not generally necessary given the

relatively short computational times of NESTA-NMR,

even for 4D data (vide infra). After reconstructing the

unsampled data points and merging them with ex-

perimentally sampled data, the indirect dimensions were

processed with NMRPipe (Delaglio et al. 1995) using

standard FFT methods for transformation and visualized

using Sparky (Goddard and Kneller).

Results

NESTA-NMR: a general purpose NUS processing

engine

We implemented the NESTA algorithm in the software

package NESTA-NMR for processing multidimensional

(2D, 3D, and 4D) NMR data using a variety of regularization

terms: L1, IRL1, and Gaussian-SL0. For practical purposes,

it is advantageous to process the direct dimension of NUS

NMR data first and extract only the region of interest along

this dimension. The appropriate regularization method can

then be performed on the data corresponding to each point in

the direct dimension. Reconstruction of each of these

smaller data sets is completely independent of the others.

This separation enables a simple parallel computing para-

digm and, additionally, alleviates memory issues associated

with higher dimensional NMR data files. A similar approach

has been adopted by MddNMR (Orekhov et al. 2003; Ore-

khov and Jaravine 2011) and hmsIST (Hyberts et al. 2012b)

for processing NUS NMR data. NESTA-NMR supports

multithreading and this feature has been implemented using

the C standard library. Thus, no additional software instal-

lation or scripts are required to enable this feature. Data

reconstruction by NESTA-NMR can be performed in par-

allel for various computational environments (e.g. laptops,

desktops, computing clusters, etc.).

The general flow of data processing is equivalent for 2D,

3D, and 4D data. The data are first converted into NMRPipe

format. Customized NMRPipe macros for Bruker and Agi-

lent data are includedwithNESTA-NMR that implement the

Rance-Kay protocol (Cavanagh et al. 1991; Kay et al. 1992;

Palmer et al. 1991, 1992) for frequency discrimination on

NUS data. Other frequency discrimination protocols (States,

States-TPPI) do not require additional processing steps.

Using NMRpipe, the direct dimension is processed, which

includes apodization, Fourier transformation, phasing, and

extraction of the region of interest. Reconstruction is then

performed using NESTA-NMR (see Supplemental Infor-

mation for more details on the program), which returns the

reconstructed data in NMRPipe format. NESTA-NMR re-

quires only the data and the sampling scheme, in the same
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format as is used by the instrument software for data col-

lection (see Supplemental Information for more details).

NESTA-NMR requires only a single command to execute,

which can either be embedded inside the NMRPipe script or

run from the command line. NMRPipe is then used for pro-

cessing the indirect dimensions of the reconstructed data.

The core package of NESTA-NMR is modular and en-

abled simple comparison of other minimization algorithms.

Separate routines were written that implement L1 and

IRL1, in addition to the Gaussian-SL0 algorithm. The

distributed version of NESTA-NMR contains all three of

these algorithms.

NESTA is faster than IST algorithms when using L1

regularization

The most time-consuming operations in the reconstruction

of NUS data are multidimensional fast Fourier transforms

(FFTs) and inverse FFTs (IFFTs), collectively referred to

as FFTs hereafter. Multidimensional FFTs are constructed

from a series of one-dimensional FFTs, each of which has a

computational cost O (N logN), where N is the number of

complex points. A 3D FFT operation for a hypercomplex

cube with dimensions (m, n, q) is composed of

4nq ? 4mq ? 4mn FFTs. Suppose m, n, q each have the

value 50, then a 3D FFT operation requires *120,000 FFT

operations. The utilization of different FFT libraries in

addition to variations in computer hardware will impact

computation time. Hence, for an unbiased measure of ef-

ficiency, it is best to evaluate the number of iterations re-

quired for convergence by different algorithms.

Using experimental 4D CC-NOESY NMR data (data set

1), we systematically tested several l1-norm minimization

algorithms. We compared the convergence rate of three l1-

norm minimization algorithms in processing a single 3D

slice (a cube) of data set 1 (see ‘‘Materials and methods’’ and

Fig. 1): IST-S (Kazimierczuk andOrekhov 2011; Stern et al.

2007), IST-D (Drori 2007) and NESTA (Becker et al. 2011).

Because two versions of ISTwere tested, the terms IST-S and

IST-D are used to differentiate these algorithms by the last

name of first author of the corresponding literature. To insure

an unbiased comparison, these algorithms are implemented

in the same software framework and utilize the same mul-

tidimensional FFT subroutines (described in the ‘‘Materials

and methods’’ section). There are several different imple-

mentations of the popular iterative soft thresholding algo-

rithm reported in the NMR literature (Bostock et al. 2012;

Drori 2007; Kazimierczuk and Orekhov 2011; Stern et al.

2007). Hyberts et al. implemented the Drori IST (IST-D)

algorithm in hmsIST and recommended updating the

threshold with a scaling factor 0.98 to gradually scale down

the threshold from a large value to small value (Hyberts et al.

2012b).We used this scaling factor (0.98) for both IST-S and

IST-D to test the convergence rate. The NESTA algorithm

incorporates a parameter, l, which is the smoothing factor

for the gradient (see Supplementary Information) and is

similar to the threshold used in IST algorithms. This pa-

rameter is also gradually scaled down from a large initial

value (90 % of the largest absolute value) to a value of 0.002

within 15–30 steps. For this reconstruction, 30 steps were

used, whichwe have found to be suitable for virtually all data

types. The scaling of l only happens when convergence is

reached, which is determined to have occurred when the

difference between the current L1 and the average L1 of ten

prior runs is smaller than a predefined value.

The two IST algorithms converge after approximately

400–500 iterations for each 3D hypercomplex cube, and

the NESTA algorithm reaches convergence in\100–150

total iterations. While the actual number of iterations used

by these algorithms may vary with the data being pro-

cessed, NMR experiment type, parameters chosen for re-

construction, and/or the convergence criteria, we

consistently find a similar ratio of performance between

NESTA, IST-S and IST-D. It is worth noting that, in both

IST-S and our implementation of NESTA, all of the sam-

pled points are kept unchanged during the course of opti-

mization. This variation in the treatment of data

consistency explains the different minima reached by the
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Fig. 1 Comparison of convergence rates for l1-norm minimization

algorithms using iterative soft thresholding (IST) or NESTA (black)

algorithms. Two IST algorithms are shown: IST-S (red) (Kazimier-

czuk and Orekhov 2011; Stern et al. 2007) and IST-D (blue) (Drori

2007). The algorithms were used to reconstruct a 4D NUS CC-

NOESY spectrum of 1 mM DCN-ILV gp78 CUE domain. Function

values at every iteration are normalized against the initial function

values before optimization. Both NESTA L1 and IST-S preserve

sampled points during optimization, which explains their convergence

to similar function values. IST-D does not preserve sampled data, and

its different convergence value is a reflection of this fact, rather than

of the relative accuracy or quality of its reconstruction relative to

NESTA L1 and IST-S
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algorithms in Fig. 1. The method utilized by NESTA-NMR

and IST-S implicitly ensures complete consistency with the

experimental data and avoids both the necessity of mea-

suring the noise level and of adjusting the weight of the

regularization terms relative to the data consistency term.

However, as noted by Stern et al. (2007), fine spectral

features present in reconstructions performed by methods

that retain all experimental data require further analysis to

be deemed statistically significant. Algorithms that use

unconstrained optimization and Bayesian procedures to

minimize both data consistency and regularization terms,

such as Maximum Entropy (Hoch and Stern 1996), do not

suffer from the aforementioned artifacts (Stern et al. 2007)

but generally require the setting of parameters associated

with noise and data consistency.

We have also benchmarked computation times with

NESTA-NMR. Two-dimensional data sets are processed

with virtually no additional time compared to the pro-

cessing of uniformly sampled data, while 3D data sets are

reconstructed in *1–5 min. Four dimensional reconstruc-

tion of data set 1 (909 direct points in a 48 9 32 9 48

grid) using 30 iterations of l for NESTA L1 requires 0.8 h

on a Mac Pro with 12 threads and 1.2 h on a Linux desktop

with 8 threads. For data set 2, the reconstruction of 849

direct points in a 48 9 64 9 48 grid requires 1.6 and 2.7 h

on the respective hardware. The difference in reconstruc-

tion times is likely attributable to the greater number of

peaks present in data set 2 (acquired on the 32 kDa ZA

construct) relative to data set 1 (acquired on the 8 kDa

CUE domain).

Preservation of spectra fidelity with NESTA L1

reconstruction

The ability of the NESTA algorithm to reconstruct weak

NOESY peaks in a 4D CC-NOESY spectrum was exam-

ined for a small protein domain, CUE, from the ubiquitin

E3 ligase gp78 (Liu et al. 2012). The sample was 2H, 13C,
15N-labeled with the exception that Iled1, Leu, Val methyl

groups were protonated (1H). This labeling scheme, re-

ferred to as ILV-labeling, has become popular for obtaining

methyl–methyl NOE constraints to generate moderate

resolution structures (Tugarinov and Kay 2003). The nar-

row distribution of proton signals of Ile-d1, Leu, Val

methyl groups of the gp78 CUE enables use of a relatively

narrow spectral width (see the ‘‘Materials and methods’’

section) in the 1H dimensions. Limited chemical shift

dispersion for the Ile, Leu, and Val methyl signals in the
13C dimensions requires the use of NUS to enable digital

resolution sufficient for unambiguous assignment. Use of

NUS sampling (7200 NUS points on a 48 9 32 9 48 grid

with 9.8 % sampling density) required a total acquisition

time of 88 h (3.7 days), whereas sampling the equivalent

uniform grid would require 37.5 days if utilizing the same

four step phase cycle.

Reconstruction of the experimental data using several

different l1-norm minimization algorithms (IST-S, IST-D

and NESTA L1) provided very similar results (Fig. 2). A

weak long-range NOE, corresponding to V34-c1:L28-d2
with a Cm–Cm distance of 5.8 Å, is *1/1000 the intensity

of the diagonal peak and is easily detected and quantified.

Data processed with the NESTA L1 algorithm are

equivalent or superior to that processed with IST-S or IST-

D, based on higher intensities and cross peak-to-diagonal

intensity ratio for weak peaks. These results demonstrate

the suitability of NUS methods, and of NESTA L1 in

particular, for acquiring and processing high dynamic

range NOESY NMR data. Additionally, cross peaks ob-

served in the small spectral region shown in Fig. 2 are

consistent with the CUE structure (Fig. 3) previously de-

termined by NMR (Liu et al. 2012).

To test the ability of the NESTA algorithm to quanti-

tatively reconstruct weak NOESY peaks, we assessed the

accuracy of peak intensities in a 3D NUS (25 % sparsity)
15N-edited NOESY-HSQC spectrum (reconstructed with

NESTA L1) compared to a reference spectrum collected

with uniform sampling (Fig. 4). The normalized intensities

of the cross peaks in the NUS spectrum demonstrate ex-

cellent agreement when compared to the same peaks in the

uniformly sampled spectrum (Fig. 5a). To ensure varia-

tions in peak intensity most accurately reflect differences

relating to reconstruction with NESTA-NMR, NUS inten-

sities in Fig. 5 were taken from a spectrum created by re-

sampling the uniformly sampled spectrum using the same

sampling schedule as the NUS spectrum depicted in Fig. 4.

The critical issue for spectrum fidelity in NOESY ex-

periments is the accurate representation of weak cross

peaks correlating to long-range distances. A correlation

plot of these weak cross peaks (Fig. 5b and highlighted in

the boxed area of Fig. 5a) demonstrates that the intensities

are accurately reconstructed with NESTA L1. The slightly

reduced slope indicates some non-linearity in the weakest

peaks; however, this deviation is quite small and would not

represent any error in the distance constraint assigned to

these NOEs in the typical structure calculation protocols.

Comparison of IRL1 and Gaussian-SL0

regularization terms

In addition to L1, two other regularization methods (IRL1

and Gaussian-SL0) were compared by processing the same

4D CC-NOESY (Fig. 6) and 3D 15N NOESY-HSQC

spectra (Fig. 7). All three spectra are equivalent in peak

representation. Interestingly, in the spectra reconstructed

by IRL1 with 5 external re-weighting iterations (IRL1-W5)

and Gaussian-SL0, the cross peaks generally have slightly
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higher intensities than those in the spectrum reconstructed

with L1. The crosspeak-to-diagonal intensity ratios for

L28-d2/V34c1 (the weakest cross peak in this slice) are

1.16 9 10-3, 1.32 9 10-3, and 1.54 9 10-3 for L1, IRL1-

W5 and Gaussian-SL0, respectively (Fig. 6b–d). This

result suggests that IRL1 and Gaussian-SL0 are better at

preserving the intensities of weak peaks. However, the

spectrum processed with Gaussian-SL0 regularization has

many residual artifacts (Fig. 6d), indicating it is best used

in conjunction with a reconstruction from one of the two

l1-norm regularizations.

To further explore the differences in peak intensity ob-

tained with the three algorithms, the linearity of the peaks

in a NUS 3D 15N-edited NOESY-HSQC spectrum recon-

structed with NESTA-NMR using Gaussian-SL0 regular-

ization was compared to the uniformly sampled spectrum

(Fig. 7a). NUS peak intensities were determined in a

fashion analogous to those of Fig. 5. The intensities of the
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Fig. 2 Comparison of regions of 4D NUS CC-NOESY spectra of

1 mM DCN-ILV gp78 CUE domain to (a) a 2D 1H–13C HMQC

collected with uniform sampling on the same sample and processed

with standard methods. The 4D CC-NOESY was reconstructed with

different l1-norm minimization algorithms: b NESTA L1, c IST-S,

and d IST-D. The slices (b–d) correspond to the frequency of Val

34-c1 (gray). A weak cross peak (dashed box) corresponding to an

NOE between methyl groups Val 34-c1 and Leu 28-d2 has *1/1000

of the intensity of the diagonal peak corresponding to Val 34-c1.
Slices from the reconstructed 4D spectra are plotted using the same

contour level. Spectral acquisition parameters are given in the

‘‘Materials and methods’’ section

Fig. 3 Structure of human gp78 CUE from PDB 2LVN (Liu et al.

2012). Distances corresponding to the long-range NOEs observed in

Fig. 2 are indicated. Methyl groups of Ile 13 (magenta), Leu 28 (red),

and Val 34 (blue) are shown. Distances for Ile 13-d1 to Val 34-c1
(4.7 Å), L28-d1 to Val 34-c1 (4.3 Å), and L28-d2 to Val 34-c1
(5.8 Å) are indicated with black lines
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Fig. 4 Slices of 3D 15N-edited NOESY-HSQC spectra of 330 lM
15N-labeled PH domain obtained with (a, blue) uniform sampling and

processed using standard methods or (b, red) with NUS and

reconstructed with NESTA L1. Spectral acquisition parameters are

given in the ‘‘Materials and methods’’ section
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weak peaks in the Gaussian-SL0 spectrum are plotted

against those from the uniformly sampled spectrum

(Fig. 7b), and a slope (1.0319) is observed that is similar to

that from L1 regularization (1.0324, Fig. 5b). However, the

slope derived from all peaks (1.0292, Fig. 7a) is slightly

closer to unity than that of L1 (1.0420, Fig. 5b). This

indicates Gaussian-SL0 preserves the intensities of peaks

more accurately than L1 in certain situations. The same
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Fig. 5 Correlation of peak intensities between uniformly sampled

and NUS 15N NOESY-HSQC spectra processed using standard

methods or reconstructed using the NESTA algorithm and L1

regularization. Both spectra were processed with NMRPipe and peak

analysis was performed with SPARKY. Correlation plots of peak

intensities corresponding to NOEs for seven residues are shown as a a
total of 96 peaks including both diagonal and cross peaks, and b 89

weak cross peaks corresponding to the boxed region of a. The red line

and table in each panel show the results of a linear regression

performed on the respective peaks. To ensure the correlations

depicted in a and b reflect only errors in reconstruction, the NUS

peak intensities are from a spectrum created by resampling the

uniformly sampled spectrum. However, the agreement between the

two independently acquired data sets is also excellent (R2 = 0.9933

for all peaks)
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Fig. 6 Regions of a 4D CC-NOESY spectra collected with NUS of

1 mM DCN-ILV gp78 CUE domain compared to a a 2D 1H–13C

HMQC collected with uniform sampling on the same sample and

processed with standard methods. The 4D CC-NOESY was recon-

structed with b L1 regularization, c five rounds of IRL1 regulariza-

tion, or d Gaussian-SL0 regularization. The slices (b–d) correspond to

the frequency of Val 34-c1 (gray). Spectra reconstructed with

different regularization terms are consistent with the uniformly

sampled NMR data with regards to expected cross peaks (Das et al.

2009). Slices from the reconstructed 4D spectra are plotted using the

same contour level. The dashed box is described in the caption to

Fig. 2
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trend can be found for IRL1 regularization relative to

uniformly sampled data (data not shown). Additionally, the

intercepts show very small deviations from zero (Figs. 5;

7), indicating that constraints derived from weak peaks in

NUS-reconstructed NOESY spectra can confidently be

used in structure calculations.

Generality of NESTA L1 reconstruction

and NESTA-NMR

The application of NUS to the breadth of NMR ex-

periments in biomolecular studies is greatly enhanced if a

common protocol can be used for all spectral types and

molecular systems. We demonstrate this capability for

NESTA-NMR by collecting data ranging from a 4D CC-

NOESY spectrum of ILV-labeled D/C/N ZA domain of

ASAP1 (32 kDa) (Fig. 8a) to the full range of triple reso-

nance experiments used for backbone and sidechain as-

signment in proteins ranging from 8 to 32 kDa

(Supplemental Table S1). The computational efficiency

and robustness of NESTA-NMR allows the same protocol

to be applied to this broad range of experiments, greatly

simplifying usage. Of particular interest is the 4D

HCCH(CO)NH TOCSY experiment (Fig. 8b). This spec-

trum was collected on the 15 kDa PH domain of ASAP1

with a sparsity of 1 %; nevertheless, the reconstructed data

provide excellent resolution and spectral integrity. This

data enabled assignment of sidechain 1H and 13C reso-

nances in this protein.

Discussion

Four-dimensional NMR experiments are powerful tools

for the determination of structural information. The

separation of signals along additional dimension(s) greatly

reduces degeneracy in resonance assignment and quanti-

tation. However, the primary limitation of the routine use

of 4D experiments is the excessive experimental time re-

quired to acquire data with sufficient digital resolution.

The incorporation of NUS greatly reduces the necessary

acquisition time and enhances resolution and sensitivity,

making 4D NMR experiments a more attractive choice.

Several pioneering studies (Bostock et al. 2012; Hyberts

et al. 2007, 2009, 2012b; Kazimierczuk and Orekhov

2011) have demonstrated that L1 minimization is par-

ticularly suitable for processing NUS data that has a high

dynamic range. We find that efficient handling of NUS 4D

data enables one to quickly establish distance restraints

and calculate three-dimensional structures by acquiring 4D

CC-NOESY experiments and other related multidimen-

sional experiments, such as 4D CN-NOESY and 4D

HCCCONH-TOCSY. However, existing implementations

of L1 minimization can be computationally intensive,
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Fig. 7 Correlation of peak intensities between uniformly sampled

and NUS 15N NOESY-HSQC spectra processed using standard

methods or reconstructed using the NESTA algorithm and Gaussian-

SL0 regularization. Correlation plots of peak intensities correspond-

ing to NOEs from seven residues are shown as a a total of 96 peaks

including both diagonal and cross peaks, and b 89 weak cross peaks

corresponding to the boxed region of a. The red line and table in each

panel show the results of a linear regression performed on the

respective peaks. The NUS peak intensities are derived as described

in the caption to Fig. 5. The R2 between peak intensities from two

independently acquired data sets is 0.9937 (data not shown)
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especially when a high degree of accuracy is needed for

high dynamic range experiments. This problem is exac-

erbated for 4D data because reconstruction requires about

one million FFT operations (assuming each indirect di-

mension has about 50 complex points) for each point in the

direct dimension. Since the computational cost for a single

iteration is very large, a high-efficiency algorithm must

converge in the smallest number of iterations possible,

thus minimizing the total number of FFT operations. After

a systematic comparison of several state-of-the-art L1 al-

gorithms previously described for processing NUS NMR

data, we find that incorporation of NESTA, a first order

gradient descent algorithm recently developed in the field

of CS, enables L1 minimization to converge with the least

number of iterations (B200) and at a low computational

cost per iteration. In addition, consistency with original

experimental data is implicitly realized by preserving the

sampled data points during reconstruction. This also im-

proves the robustness of the reconstruction by eliminating

both the need to estimate noise and to choose pa-

rameter(s) that accurately gauge the level of data consis-

tency. Generally, a 3D NUS cube can be reconstructed

within several minutes, enabling one to process 4D NUS

NMR data with a laptop or workstation computer within a

few hours.

Our comparison of different reconstruction algorithms

using high-dynamic range NOESY data demonstrated that

Gaussian-SL0 preserves linearity better than L1 methods.

However, as a non-convex function, Gaussian-SL0 is

inherently a less stable function to minimize. Furthermore,

Gaussian-SL0 cannot benefit from the acceleration

schemes in the NESTA algorithm, which is designed for

minimization of convex functions. For this reason, Gaus-

sian-SL0 generally requires a greater number of steps for

convergence, thus reducing the computing efficiency rela-

tive to that of the NESTA algorithm with L1 regularization.

This hinders the application of Gaussian-SL0 in cases

where fast processing speeds are needed. Therefore, we

recommend using Gaussian-SL0 for smaller regions of

interest in tandem with L1 regularization to process the

whole dataset. Additionally, although IRL1 is also a non-

convex function, it is implemented as an iterative

minimization of a weighted L1 where the weights are up-

dated after each NESTA run. IRL1 provides the increased

fidelity of Gaussian-SL0, while only incurring moderate

additional computational time (generally *3–5 times

longer than L1). Consequently, NESTA L1 minimization

provides the most efficient and general algorithm for NUS

reconstruction, and either Gaussian-SL0 or IRL1 can be

utilized as desired for a more detailed examination of

spectral features.

The discussion in this report emphasizes the application

of the regularization terms L1, IRL1, and Gaussian-SL0

and the NESTA algorithm in the context of processing

NOESY NMR data that have a high dynamic range;

however, we also demonstrate that L1 can form the basis of

a generalized approach for a broad range of NMR ex-

periments such as HCCCONH-TOCSY, CN-NOESY, and
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Fig. 8 NESTA-NMR is applicable to many NMR experiments as

shown by a a plane corresponding to the chemical shift of the

Leu231-d1 methyl group from a 4D CC-NOESY experiment

performed on the 32 kDa ILV-DCN-ZA domain of ASAP1

(400 lM), and b a plane corresponding to the side chain of a single

amino acid residue in the 15 kDa C/N labeled PH domain of ASAP1

(330 lM). The boxed contour plot and trace on the right side are from

a 3D H(CC)(CO)NH experiment, and the boxed contour plot and

trace on the bottom are from a 3D (H)CC(CO)NH experiment. See

‘‘Materials and methods’’ and Supplemental Table S1 for further

details
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backbone assignment experiments. We recommend using

the NESTA algorithm and L1 regularization for general

purpose NUS NMR data processing. In the case of NOESY

NMR data and other situations where more accurate esti-

mation of peak intensity is required, IRL1 or Gaussian-SL0

can be used. The software package NESTA-NMR imple-

ments L1, IRL1, and Gaussian-SL0 for reconstruction of

2D, 3D, and 4D NUS NMR data that can be subsequently

processed with NMRPipe. Thus, NESTA-NMR provides a

generalized, efficient solution that integrates with popular

workflows for the application of NUS to biomolecular

NMR studies.

Software availability

NESTA-NMR binary executables for Mac and Linux, an

NMRPipe macro for Rance-Kay frequency discrimination,

installation instructions, documentation, and sample data

are available on-line at http://nestanmr.com.
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